Гистограмма с накоплением с несколькими логическими переменными по оси x

Я имею дело с данными временных рядов. У меня есть горизонт 16 временных точек и 3 модели. Я выполнил разложение дисперсии ошибки прогноза для каждой модели и хочу построить график FEVD для данной переменной для каждой модели рядом. Я не знаю, ясно ли я, но предположим, что во Времени 1 у меня 0% для модели 1, 5% для модели 2 и 3% для модели 3. Я хочу построить отдельные столбцы для каждой модели в каждый период времени. . Возможно ли это с помощью ggplot2?

Ниже образец моей базы данных:

Horizon Variable    Response  Shock Country  Model
   1      GDP     0.000000000  PCOM  Brazil Model 1
   2      GDP     0.404381850  PCOM  Brazil Model 1
   3      GDP     0.401069156  PCOM  Brazil Model 1
   4      GDP     0.368749090  PCOM  Brazil Model 1
   5      GDP     0.351268777  PCOM  Brazil Model 1
   6      GDP     0.345947281  PCOM  Brazil Model 1
   7      GDP     0.347482783  PCOM  Brazil Model 1
   8      GDP     0.352164160  PCOM  Brazil Model 1
   9      GDP     0.357781202  PCOM  Brazil Model 1
  10      GDP     0.363198705  PCOM  Brazil Model 1
  11      GDP     0.367974083  PCOM  Brazil Model 1
  12      GDP     0.372078699  PCOM  Brazil Model 1
  13      GDP     0.375666736  PCOM  Brazil Model 1
  14      GDP     0.378901315  PCOM  Brazil Model 1
  15      GDP     0.381878427  PCOM  Brazil Model 1
  16      GDP     0.384630719  PCOM  Brazil Model 1
   1      GDP     0.000000000  PCOM  Brazil Model 2
   2      GDP     0.301533139  PCOM  Brazil Model 2
   3      GDP     0.308349733  PCOM  Brazil Model 2
   4      GDP     0.263588570  PCOM  Brazil Model 2
   5      GDP     0.239982463  PCOM  Brazil Model 2
   6      GDP     0.235266964  PCOM  Brazil Model 2
   7      GDP     0.240041605  PCOM  Brazil Model 2
   8      GDP     0.248219530  PCOM  Brazil Model 2
   9      GDP     0.256646193  PCOM  Brazil Model 2
  10      GDP     0.263902054  PCOM  Brazil Model 2
  11      GDP     0.269612632  PCOM  Brazil Model 2
  12      GDP     0.273995159  PCOM  Brazil Model 2
  13      GDP     0.277464105  PCOM  Brazil Model 2
  14      GDP     0.280368261  PCOM  Brazil Model 2
  15      GDP     0.282903588  PCOM  Brazil Model 2
  16      GDP     0.285144263  PCOM  Brazil Model 2
   1      GDP     0.000000000  PCOM  Brazil Model 3
   2      GDP     0.034171019  PCOM  Brazil Model 3
   3      GDP     0.024779691  PCOM  Brazil Model 3
   4      GDP     0.016802809  PCOM  Brazil Model 3
   5      GDP     0.011206834  PCOM  Brazil Model 3
   6      GDP     0.009575322  PCOM  Brazil Model 3
   7      GDP     0.008935842  PCOM  Brazil Model 3
   8      GDP     0.008605141  PCOM  Brazil Model 3
   9      GDP     0.008182777  PCOM  Brazil Model 3
  10      GDP     0.007498230  PCOM  Brazil Model 3
  11      GDP     0.006684634  PCOM  Brazil Model 3
  12      GDP     0.005917865  PCOM  Brazil Model 3
  13      GDP     0.005320365  PCOM  Brazil Model 3
  14      GDP     0.004940644  PCOM  Brazil Model 3
  15      GDP     0.004782973  PCOM  Brazil Model 3
  16      GDP     0.004831577  PCOM  Brazil Model 3

РЕДАКТИРОВАТЬ Следуя советам @ A.Suliman, я немного изменил свои данные, выполнив:

Data %>% mutate(Models = Model) %>% unite(Shocks, Shock, Model)

а затем сюжет:

gdp_br <- filter(Data, Variable  == "GDP")
xticks <- seq(min(0), max(16), by = 1)

ggplot(gdp_br, aes(as.factor(Horizon), Response, fill = Shocks, group = Models)) + 
  geom_bar(stat = "identity", width = 0.7, position = position_dodge(width = 0.8)) + 
  theme(plot.title = element_text(size = 10, face = "bold", lineheight = 1, hjust = 0), 
        axis.text.x = element_text(size = rel(1.1), angle = 10),
        legend.position = "bottom",
        legend.title = element_blank()) + 
  scale_y_continuous(labels = percent_format()) + 
  labs(x = "Horizon")

Сюжет

Гистограмма с накоплением с несколькими логическими переменными по оси x

Но похоже, что некоторые ярлыки не наносятся.


РЕДАКТИРОВАТЬ2: Мне удалось получить желаемый график в Excel. Как мне построить это с помощью ggplot?

Гистограмма с накоплением с несколькими логическими переменными по оси x

Да, это можно сделать в ggplot2. что ты уже испробовал?

Z.Lin 02.05.2018 05:27

На желаемом графике в Excel есть легенда заполнения для WGDP / VIX / PCOM, но, насколько я могу судить, образцы данных содержат только PCOM. Вы можете посмотреть здесь. Приведите образец данных, который отражает вашу проблему, и покажите, каков ваш желаемый результат, на основе этого образца.

Z.Lin 03.05.2018 04:47
Стоит ли изучать PHP в 2023-2024 годах?
Стоит ли изучать PHP в 2023-2024 годах?
Привет всем, сегодня я хочу высказать свои соображения по поводу вопроса, который я уже много раз получал в своем сообществе: "Стоит ли изучать PHP в...
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
В JavaScript одним из самых запутанных понятий является поведение ключевого слова "this" в стрелочной и обычной функциях.
Приемы CSS-макетирования - floats и Flexbox
Приемы CSS-макетирования - floats и Flexbox
Здравствуйте, друзья-студенты! Готовы совершенствовать свои навыки веб-дизайна? Сегодня в нашем путешествии мы рассмотрим приемы CSS-верстки - в...
Тестирование функциональных ngrx-эффектов в Angular 16 с помощью Jest
В системе управления состояниями ngrx, совместимой с Angular 16, появились функциональные эффекты. Это здорово и делает код определенно легче для...
Концепция локализации и ее применение в приложениях React ⚡️
Концепция локализации и ее применение в приложениях React ⚡️
Локализация - это процесс адаптации приложения к различным языкам и культурным требованиям. Это позволяет пользователям получить опыт, соответствующий...
Пользовательский скаляр GraphQL
Пользовательский скаляр GraphQL
Листовые узлы системы типов GraphQL называются скалярами. Достигнув скалярного типа, невозможно спуститься дальше по иерархии типов. Скалярный тип...
0
2
914
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

1)

library(ggplot2)
library(scales)

ggplot(Data, aes(as.factor(Horizon), Response,fill= Model)) +   
geom_bar( stat = "identity", width = 0.7, position = position_dodge(width = 0.8)) +
  theme(plot.title = element_text(size = 10, face = "bold", lineheight=1,hjust = 0), axis.text.x = element_text( size = rel(1.1), angle = 10),legend.position = "bottom",legend.title = element_blank()) + scale_y_continuous(labels = percent_format()) +
  labs(
     x = "Horizon"
    #y = "Percentages",
    #title = gg_title,
    #subtitle = gg_title_subtitle
    #caption = "Data from fueleconomy.gov"
 )

Данные

Input = ("
Horizon Variable    Response  Shock Country  Model
1      GDP     0.000000000  PCOM  Brazil 'Model 1'
2      GDP     0.404381850  PCOM  Brazil 'Model 1'
3      GDP     0.401069156  PCOM  Brazil 'Model 1'
4      GDP     0.368749090  PCOM  Brazil 'Model 1'
5      GDP     0.351268777  PCOM  Brazil 'Model 1'
6      GDP     0.345947281  PCOM  Brazil 'Model 1'
7      GDP     0.347482783  PCOM  Brazil 'Model 1'
8      GDP     0.352164160  PCOM  Brazil 'Model 1'
9      GDP     0.357781202  PCOM  Brazil 'Model 1'
10      GDP     0.363198705  PCOM  Brazil 'Model 1'
11      GDP     0.367974083  PCOM  Brazil 'Model 1'
12      GDP     0.372078699  PCOM  Brazil 'Model 1'
13      GDP     0.375666736  PCOM  Brazil 'Model 1'
14      GDP     0.378901315  PCOM  Brazil 'Model 1'
15      GDP     0.381878427  PCOM  Brazil 'Model 1'
16      GDP     0.384630719  PCOM  Brazil 'Model 1'
1      GDP     0.000000000  PCOM  Brazil 'Model 2'
2      GDP     0.301533139  PCOM  Brazil 'Model 2'
3      GDP     0.308349733  PCOM  Brazil 'Model 2'
4      GDP     0.263588570  PCOM  Brazil 'Model 2'
5      GDP     0.239982463  PCOM  Brazil 'Model 2'
6      GDP     0.235266964  PCOM  Brazil 'Model 2'
7      GDP     0.240041605  PCOM  Brazil 'Model 2'
8      GDP     0.248219530  PCOM  Brazil 'Model 2'
9      GDP     0.256646193  PCOM  Brazil 'Model 2'
10      GDP     0.263902054  PCOM  Brazil 'Model 2'
11      GDP     0.269612632  PCOM  Brazil 'Model 2'
12      GDP     0.273995159  PCOM  Brazil 'Model 2'
13      GDP     0.277464105  PCOM  Brazil 'Model 2'
14      GDP     0.280368261  PCOM  Brazil 'Model 2'
15      GDP     0.282903588  PCOM  Brazil 'Model 2'
16      GDP     0.285144263  PCOM  Brazil 'Model 2'
1      GDP     0.000000000  PCOM  Brazil 'Model 3'
2      GDP     0.034171019  PCOM  Brazil 'Model 3'
3      GDP     0.024779691  PCOM  Brazil 'Model 3'
4      GDP     0.016802809  PCOM  Brazil 'Model 3'
5      GDP     0.011206834  PCOM  Brazil 'Model 3'
6      GDP     0.009575322  PCOM  Brazil 'Model 3'
7      GDP     0.008935842  PCOM  Brazil 'Model 3'
8      GDP     0.008605141  PCOM  Brazil 'Model 3'
9      GDP     0.008182777  PCOM  Brazil 'Model 3'
10      GDP     0.007498230  PCOM  Brazil 'Model 3'
11      GDP     0.006684634  PCOM  Brazil 'Model 3'
12      GDP     0.005917865  PCOM  Brazil 'Model 3'
13      GDP     0.005320365  PCOM  Brazil 'Model 3'
14      GDP     0.004940644  PCOM  Brazil 'Model 3'
15      GDP     0.004782973  PCOM  Brazil 'Model 3'
16      GDP     0.004831577  PCOM  Brazil 'Model 3'
")

Data = read.table(textConnection(Input),header=TRUE)

2)

 ggplot(Data,aes(Model, Response, fill=Shock)) + 
    geom_bar( stat = "identity", position = "stack") +
    facet_grid(~ Horizon, scales = "free_x", space = "free_x") +
    theme_bw() + 
    theme(panel.spacing = unit(0,"lines"),
    strip.background = element_blank(),plot.title = element_text(size = 10, face = "bold", lineheight=1,hjust = 0), axis.text.x = element_text( size = rel(1.1), angle = 90),legend.position = "bottom") + scale_y_continuous(labels = percent_format()) 

Данные 2

#Using dput(Data)

Data <- structure(list(Horizon = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 
10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 
14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 
12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 
10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L), Variable = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "GDP", class = "factor"), 
Response = c(0, 0.40438185, 0.401069156, 0.36874909, 0.351268777, 
0.345947281, 0.347482783, 0.35216416, 0.357781202, 0.363198705, 
0.367974083, 0.372078699, 0.375666736, 0.378901315, 0.381878427, 
0.384630719, 0, 0.301533139, 0.308349733, 0.26358857, 0.239982463, 
0.235266964, 0.240041605, 0.24821953, 0.256646193, 0.263902054, 
0.269612632, 0.273995159, 0.277464105, 0.280368261, 0.282903588, 
0.285144263, 0, 0.034171019, 0.024779691, 0.016802809, 0.011206834, 
0.009575322, 0.008935842, 0.008605141, 0.008182777, 0.00749823, 
0.006684634, 0.005917865, 0.005320365, 0.004940644, 0.004782973, 
0.004831577, 0.1, 0.50438185, 0.501069156, 0.46874909, 0.451268777, 
0.445947281, 0.447482783, 0.45216416, 0.457781202, 0.463198705, 
0.467974083, 0.472078699, 0.475666736, 0.478901315, 0.481878427, 
0.484630719, 0.1, 0.401533139, 0.408349733, 0.36358857, 0.339982463, 
0.335266964, 0.340041605, 0.34821953, 0.356646193, 0.363902054, 
0.369612632, 0.373995159, 0.377464105, 0.380368261, 0.382903588, 
0.385144263, 0.1, 0.134171019, 0.124779691, 0.116802809, 
0.111206834, 0.109575322, 0.108935842, 0.108605141, 0.108182777, 
0.10749823, 0.106684634, 0.105917865, 0.105320365, 0.104940644, 
0.104782973, 0.104831577, 0.2, 0.60438185, 0.601069156, 0.56874909, 
0.551268777, 0.545947281, 0.547482783, 0.55216416, 0.557781202, 
0.563198705, 0.567974083, 0.572078699, 0.575666736, 0.578901315, 
0.581878427, 0.584630719, 0.2, 0.501533139, 0.508349733, 
0.46358857, 0.439982463, 0.435266964, 0.440041605, 0.44821953, 
0.456646193, 0.463902054, 0.469612632, 0.473995159, 0.477464105, 
0.480368261, 0.482903588, 0.485144263, 0.2, 0.234171019, 
0.224779691, 0.216802809, 0.211206834, 0.209575322, 0.208935842, 
0.208605141, 0.208182777, 0.20749823, 0.206684634, 0.205917865, 
0.205320365, 0.204940644, 0.204782973, 0.204831577), Shock = structure(c(3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("AAA", "BBB", 
"PCOM"), class = "factor"), Country = structure(c(1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Brazil", class = "factor"), 
Model = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("Model 1", 
"Model 2", "Model 3"), class = "factor")), .Names = c("Horizon", 
"Variable", "Response", "Shock", "Country", "Model"), 
row.names = c(NA,-144L), class = "data.frame") 

Для получения дополнительных идей о маркировке двух переменных на оси X, проверьте здесь. Я не определял switch = x в facet_grid, так как метка оси x будет ниже фасетной переменной, как показывает здесь, что, я считаю, не круто.

Другие вопросы по теме