Как исправить «Нет файловой системы для схемы: gs» в pyspark?

Я пытаюсь прочитать файл json из ведра google в фрейм данных pyspark на локальной искровой машине. Вот код:

import pandas as pd
import numpy as np

from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession, SQLContext

conf = SparkConf().setAll([('spark.executor.memory', '16g'),
                        ('spark.executor.cores','4'),
                         ('spark.cores.max','4')]).setMaster('local[*]')


spark = (SparkSession.
              builder.
              config(conf=conf).
              getOrCreate())


sc = spark.sparkContext

import glob
import bz2
import json
import pickle


bucket_path = "gs://<SOME_PATH>/"
client = storage.Client(project='<SOME_PROJECT>')
bucket = client.get_bucket ('<SOME_PATH>')
blobs = bucket.list_blobs()

theframes = []

for blob in blobs:
    print(blob.name)        
    testspark = spark.read.json(bucket_path + blob.name).cache()
    theframes.append(testspark) 

Он нормально читает файлы из ведра (я вижу распечатку из blob.name), но затем вылетает вот так:

 Traceback (most recent call last):
 File "test_code.py", line 66, in <module>
   testspark = spark.read.json(bucket_path + blob.name).cache()
 File "/home/anaconda3/envs/py37base/lib/python3.6/site-packages/pyspark/sql/readwriter.py", line 274, in json
return self._df(self._jreader.json(self._spark._sc._jvm.PythonUtils.toSeq(path)))
 File "/home/anaconda3/envs/py37base/lib/python3.6/site-packages/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
 File "/home/anaconda3/envs/py37base/lib/python3.6/site-packages/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
 File "/home/anaconda3/envs/py37base/lib/python3.6/site-packages/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o51.json.
: java.io.IOException: No FileSystem for scheme: gs

Я видел этот тип ошибки, обсуждаемый в stackoverflow, но большинство решений, похоже, находятся в Scala, в то время как у меня есть pyspark, и/или включают в себя возню с core-site.xml, что я сделал безрезультатно.

Я использую искру 2.4.1 и питон 3.6.7.

Помощь будет высоко оценена!

Стоит ли изучать PHP в 2023-2024 годах?
Стоит ли изучать PHP в 2023-2024 годах?
Привет всем, сегодня я хочу высказать свои соображения по поводу вопроса, который я уже много раз получал в своем сообществе: "Стоит ли изучать PHP в...
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
В JavaScript одним из самых запутанных понятий является поведение ключевого слова "this" в стрелочной и обычной функциях.
Приемы CSS-макетирования - floats и Flexbox
Приемы CSS-макетирования - floats и Flexbox
Здравствуйте, друзья-студенты! Готовы совершенствовать свои навыки веб-дизайна? Сегодня в нашем путешествии мы рассмотрим приемы CSS-верстки - в...
Тестирование функциональных ngrx-эффектов в Angular 16 с помощью Jest
В системе управления состояниями ngrx, совместимой с Angular 16, появились функциональные эффекты. Это здорово и делает код определенно легче для...
Концепция локализации и ее применение в приложениях React ⚡️
Концепция локализации и ее применение в приложениях React ⚡️
Локализация - это процесс адаптации приложения к различным языкам и культурным требованиям. Это позволяет пользователям получить опыт, соответствующий...
Пользовательский скаляр GraphQL
Пользовательский скаляр GraphQL
Листовые узлы системы типов GraphQL называются скалярами. Достигнув скалярного типа, невозможно спуститься дальше по иерархии типов. Скалярный тип...
5
0
5 823
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

Некоторые параметры конфигурации необходимы для распознавания «gs» как распределенной файловой системы.

Используйте этот параметр для соединителя облачного хранилища Google, gcs-connector-hadoop2-latest.jar.

spark = SparkSession \
        .builder \
        .config("spark.jars", "/path/to/gcs-connector-hadoop2-latest.jar") \
        .getOrCreate()

Другие конфиги, которые можно установить из pyspark

spark._jsc.hadoopConfiguration().set('fs.gs.impl', 'com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem')
# This is required if you are using service account and set true, 
spark._jsc.hadoopConfiguration().set('fs.gs.auth.service.account.enable', 'true')
spark._jsc.hadoopConfiguration().set('google.cloud.auth.service.account.json.keyfile', "/path/to/keyfile")
# Following are required if you are using oAuth
spark._jsc.hadoopConfiguration().set('fs.gs.auth.client.id', 'YOUR_OAUTH_CLIENT_ID')
spark._jsc.hadoopConfiguration().set('fs.gs.auth.client.secret', 'OAUTH_SECRET')

В качестве альтернативы вы можете настроить эти конфигурации в core-site.xml или spark-defaults.conf.

Настройка Hadoop в командной строке

Вы также можете использовать свойства конфигурации с префиксом spark.hadoop для настройки, когда pyspark (или spark-submit в целом), например.

--conf spark.hadoop.fs.gs.impl=com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem

Другие вопросы по теме