Как мне построить матрицу cramer-v, используя приведенный ниже код?

Я пытаюсь создать тепловую карту/матрицу корреляции, используя cramers. Я нашел приведенный ниже код, чтобы помочь мне в этом, но при использовании itertools.combinations он не возвращает комбинацию с самим собой, например. 0,0 1,1 и т. д., поэтому моя матрица совершенно неверна, поскольку при сравнении столбца с самим собой диагонали должны быть равны 1, но они равны 0. Все, кроме 2, из моих 20 столбцов являются категориальными, поэтому я использую Крамеры

def cramers_corrected_stat(confusion_matrix):
    """ calculate Cramers V statistic for categorical-categorical association.
        uses correction from Bergsma and Wicher, 
        Journal of the Korean Statistical Society 42 (2013): 323-328
    """
    chi2 = ss.chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum().sum()
    phi2 = chi2/n
    r,k = confusion_matrix.shape
    phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))    
    rcorr = r - ((r-1)**2)/(n-1)
    kcorr = k - ((k-1)**2)/(n-1)
    return np.sqrt(phi2corr / min( (kcorr-1), (rcorr-1))) 


cols = df.columns.to_list()
corrM = np.zeros((len(cols),len(cols)))
# there's probably a nice pandas way to do this
for col1, col2 in itertools.combinations(cols, 2):
    idx1, idx2 = cols.index(col1), cols.index(col2)
    corrM[idx1, idx2] = cramers_corrected_stat(pd.crosstab(df[col1], df[col2]))
    corrM[idx2, idx1] = corrM[idx1, idx2]

Как это исправить?

Почему в Python есть оператор "pass"?
Почему в Python есть оператор "pass"?
Оператор pass в Python - это простая концепция, которую могут быстро освоить даже новички без опыта программирования.
Некоторые методы, о которых вы не знали, что они существуют в Python
Некоторые методы, о которых вы не знали, что они существуют в Python
Python - самый известный и самый простой в изучении язык в наши дни. Имея широкий спектр применения в области машинного обучения, Data Science,...
Основы Python Часть I
Основы Python Часть I
Вы когда-нибудь задумывались, почему в программах на Python вы видите приведенный ниже код?
LeetCode - 1579. Удаление максимального числа ребер для сохранения полной проходимости графа
LeetCode - 1579. Удаление максимального числа ребер для сохранения полной проходимости графа
Алиса и Боб имеют неориентированный граф из n узлов и трех типов ребер:
Оптимизация кода с помощью тернарного оператора Python
Оптимизация кода с помощью тернарного оператора Python
И последнее, что мы хотели бы показать вам, прежде чем двигаться дальше, это
Советы по эффективной веб-разработке с помощью Python
Советы по эффективной веб-разработке с помощью Python
Как веб-разработчик, Python может стать мощным инструментом для создания эффективных и масштабируемых веб-приложений.
0
0
1 067
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

Я написал что-то, что делает именно это: github.com/shakedzy/дайтон.

Ищите associations под nominal.

Другие вопросы по теме