Я хочу удалить всю последнюю непрерывную заполненную запись для столбца pandas.
Пример: Для ниже:
import pandas as pd
df = pd.DataFrame({
0: ['1/24/2022', '1/25/2022', '1/26/2022', '1/27/2022', '1/28/2022', '1/29/2022', '1/30/2022', '1/31/2022', '2/1/2022', '2/2/2022', '2/3/2022', '2/4/2022', '2/5/2022', '2/6/2022', '2/7/2022', '2/8/2022', '2/9/2022'],
1: [None, None, 'AB', 'C', 'D', 'Epiphany', None, None, None, None, None, 'A', 'A', 'A', 'B', 'B', None]
})
last_non_empty_row = df.last_valid_index()
last_non_empty_cell = df.loc[last_non_empty_row]
Я хотел бы преобразовать 'Epiphany' в None и 'B' для '2/7/2022' в None.
Ожидаемый результат:
df_expected = pd.DataFrame({
0: ['1/24/2022', '1/25/2022', '1/26/2022', '1/27/2022', '1/28/2022', '1/29/2022', '1/30/2022', '1/31/2022', '2/1/2022', '2/2/2022', '2/3/2022', '2/4/2022', '2/5/2022', '2/6/2022', '2/7/2022', '2/8/2022', '2/9/2022'],
1: [None, None, 'AB', 'C', 'D', None, None, None, None, None, None, 'A', 'A', 'A', 'B', None, None]
})
Как это может быть сделано?
Обе записи являются последними заполненными записями.
Вы можете сравнить отсутствующие значения со сдвигом вверх на Series.shift и установить None, если они совпадают в DataFrame.loc - если последние значения не NaN/None после решения, установите это значение в None с помощью параметра fill_value=True:
m = df[1].isna()
df.loc[m.shift(-1, fill_value=True) & ~m, 1] = None
print (df)
0 1
0 1/24/2022 None
1 1/25/2022 None
2 1/26/2022 AB
3 1/27/2022 C
4 1/28/2022 D
5 1/29/2022 None
6 1/30/2022 None
7 1/31/2022 None
8 2/1/2022 None
9 2/2/2022 None
10 2/3/2022 None
11 2/4/2022 A
12 2/5/2022 A
13 2/6/2022 A
14 2/7/2022 B
15 2/8/2022 None
16 2/9/2022 None
Подробности:
print (m.shift(-1, fill_value=True) & ~m)
0 False
1 False
2 False
3 False
4 False
5 True
6 False
7 False
8 False
9 False
10 False
11 False
12 False
13 False
14 False
15 True
16 False
Name: 1, dtype: bool
Производительность:
#1.02M rows
df = pd.concat([df] * 60000, ignore_index=True)
In [113]: %%timeit
...: m = df[1].isnull()
...:
...: df[1] = df.loc[~m, 1].groupby(m.cumsum()).head(-1)
...:
...:
74 ms ± 5.07 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [114]: %%timeit
...: aux = df[1].shift(-1).isnull()
...: df[1] = df[1].mask(aux & aux.shift().eq(False), None)
...:
...:
141 ms ± 1.59 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [115]: %%timeit
...: aux = df[1].shift(-1).isnull()
...: df[1] = np.where(aux & aux.shift().eq(False), None, df[1])
...:
...:
147 ms ± 646 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [116]: %%timeit
...: m = df[1].isna()
...: df.loc[m.shift(-1, fill_value=True) & ~m, 1] = None
...:
...:
35.2 ms ± 3.93 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Это решение неверно, оно завершится ошибкой, если последнее значение не является NaN.
Не маскирует элемент…
@mozway - Хорошо, теперь я подтверждаю свой комментарий о медленном groupby. Можете ли вы доказать, что мое решение неверно?
@jezrael: Да, попробуйте с этим фреймом данных. df = pd.DataFrame({ 0: ['24.01.2022', '25.01.2022', '26.01.2022', '27.01.2022', '28.01.2022', «29.01.2022», «30.01.2022», «31.01.2022», «01.02.2022», «2.02.2022», «3.02.2022», «2 /4/2022», «5/02/2022», «6/02/2022», «7/2/2022», «8/02/2022», «9/02/2022»], 1: [ Нет, Нет, «AB», «C», «D», «Epiphany», «Нет», «Нет», «Нет», «Нет», «Нет», «A», «A», «A», «B», «B», 'B'] }) Ваше решение не будет работать для последнего элемента
Я не вижу, чего вы не понимаете, это дает неправильный результат, вы привели себе пример, который не работает ... Также 2x фактор не медленный (хорошо, если он был в 100 раз медленнее), особенно если решение более гибкое.
Я только что протестировал свое решение, и оно работает нормально, как и решение PaulS… возможно, вы неправильно поняли вопрос. Во всяком случае достаточно времени, потраченного на это
@ user13744439 - Извините, я понимаю, что решение другое - теперь решение работает хорошо. Спасибо.
Если вы хотите сделать оба явно, то:
df[1][df[1]=='Epiphany']=None
df[1][(df[1]=='B') & (df[0]=='2/7/2022')]=None
Редактировать:
Как прокомментировал Корральен, ты можешь сделать:
df.loc[df[1]=='Epiphany', 1]=None
df.loc[(df[1]=='B') & (df[0]=='2/7/2022'), 1]=None
Чтобы избежать потенциальных SettingWithCopyWarning
Другое возможное решение:
aux = df[1].shift(-1).isnull()
df[1] = np.where(aux & aux.shift().eq(False), None, df[1])
Или:
aux = df[1].shift(-1).isnull()
df[1] = df[1].mask(aux & aux.shift().eq(False), None)
Выход:
0 1
0 1/24/2022 None
1 1/25/2022 None
2 1/26/2022 AB
3 1/27/2022 C
4 1/28/2022 D
5 1/29/2022 None
6 1/30/2022 None
7 1/31/2022 None
8 2/1/2022 None
9 2/2/2022 None
10 2/3/2022 None
11 2/4/2022 A
12 2/5/2022 A
13 2/6/2022 A
14 2/7/2022 B
15 2/8/2022 None
16 2/9/2022 None
Используйте собственный groupby.head:
# identify null values
m = df[1].isnull()
# groupby consecutive non-null: groupby(m.cumsum())
# get the values except the last per group: head(-1)
# assign back to the column
df[1] = df.loc[~m, 1].groupby(m.cumsum()).head(-1)
Выход:
0 1
0 1/24/2022 NaN
1 1/25/2022 NaN
2 1/26/2022 AB
3 1/27/2022 C
4 1/28/2022 D
5 1/29/2022 NaN
6 1/30/2022 NaN
7 1/31/2022 NaN
8 2/1/2022 NaN
9 2/2/2022 NaN
10 2/3/2022 NaN
11 2/4/2022 A
12 2/5/2022 A
13 2/6/2022 A
14 2/7/2022 B
15 2/8/2022 NaN
16 2/9/2022 NaN
Супер, спасибо. Сколько групп? Какова была длина df?
200000 групп, 1 млн строк
Почему Epiphany, а B с 2/7/2022?