Как я создаю новый набор данных в R, используя набор данных HELPmiss

Используя набор данных HELPmiss, меня интересуют только пациенты, которые были рандомизированы в клинику HELP (лечить = да). Как мне создать новый набор данных только для этих людей?

Стоит ли изучать PHP в 2023-2024 годах?
Стоит ли изучать PHP в 2023-2024 годах?
Привет всем, сегодня я хочу высказать свои соображения по поводу вопроса, который я уже много раз получал в своем сообществе: "Стоит ли изучать PHP в...
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
В JavaScript одним из самых запутанных понятий является поведение ключевого слова "this" в стрелочной и обычной функциях.
Приемы CSS-макетирования - floats и Flexbox
Приемы CSS-макетирования - floats и Flexbox
Здравствуйте, друзья-студенты! Готовы совершенствовать свои навыки веб-дизайна? Сегодня в нашем путешествии мы рассмотрим приемы CSS-верстки - в...
Тестирование функциональных ngrx-эффектов в Angular 16 с помощью Jest
В системе управления состояниями ngrx, совместимой с Angular 16, появились функциональные эффекты. Это здорово и делает код определенно легче для...
Концепция локализации и ее применение в приложениях React ⚡️
Концепция локализации и ее применение в приложениях React ⚡️
Локализация - это процесс адаптации приложения к различным языкам и культурным требованиям. Это позволяет пользователям получить опыт, соответствующий...
Пользовательский скаляр GraphQL
Пользовательский скаляр GraphQL
Листовые узлы системы типов GraphQL называются скалярами. Достигнув скалярного типа, невозможно спуститься дальше по иерархии типов. Скалярный тип...
0
0
18
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

Вы можете использовать функцию filter для выбора только пациентов с treat = yes, используя этот код:

library(mosaicData)
library(tidyverse)

data(HELPmiss)

your_data <- HELPmiss %>%
  filter(treat == "yes")

Данные выглядят так:

   age anysub cesd d1 daysanysub dayslink drugrisk e2b female    sex g1b homeless i1  i2 id indtot link      mcs      pcs
1   37    yes   49  3        177      225        0  NA      0   male yes   housed 13  26  1     39  yes 25.11199 58.41369
2   37    yes   30 22          2       NA        0  NA      0   male yes homeless 56  62  2     43 <NA> 26.67031 36.03694
3   47    yes    6  1         31      365        0  NA      1 female  no   housed  4   4  6     29   no 55.50899 46.47521
4   28    yes   32  1         47      365        7   8      0   male yes homeless 12  24  8     44   no  9.16053 65.13801
5   39    yes   46  4        115      382       20   3      0   male  no homeless 20  27 10     44   no 36.14376 22.61060
6   34   <NA>   46  0         NA      365        8  NA      1 female  no   housed  0   0 11     34   no 43.97468 60.07915
7   60    yes   36 10          6       22        0   1      0   male  no homeless 13  20 15     41  yes 25.84616 31.82965
8   36    yes   43  2          0      443        0  NA      0   male  no   housed 51  51 16     38   no 23.60844 55.16998
9   28    yes   35  6         27       41        0   2      1 female yes homeless  0   0 17     26  yes 29.79983 44.77651
10  27     no   52  0        198       49       10   4      1 female yes   housed  9  24 20     37  yes 15.45827 37.45214
11  41   <NA>   35  1         NA      391       12   1      0   male  no   housed 26  26 22     36   no 20.87145 36.58481
12  33    yes   18  1        129      272        0  NA      0   male  no   housed  0   0 23     27  yes 47.28674 61.64098
13  34    yes   30  1        154       56        0  NA      0   male  no   housed  3   3 28     34  yes 37.37156 63.06006
14  35    yes   27  0         34      361        1  NA      0   male  no homeless  7   7 30     37   no 34.33567 61.82597
15  29    yes   47  1        142       79        0   3      0   male  no homeless  0   0 32     37  yes 27.71771 42.22490
16  37     no   11  0        203      203        3  NA      0   male  no homeless  6   6 35     35  yes 27.85261 63.52000
17  29     no   26  1        193      354        0  NA      0   male  no   housed  0   0 36     21   no 54.77435 53.35109
18  33    yes   29  1         10       29        0  NA      0   male  no   housed  0   0 37     30  yes 27.49548 56.73985
19  20    yes   34  1        177      365        0  NA      0   male  no homeless 32 135 38     33   no 56.32433 53.23396
20  18   <NA>   38  1         NA      365        0   1      1 female  no homeless 24  32 41     36   no 25.19557 34.28825
21  43     no   16 15        191      414        0  NA      0   male  no homeless 24  36 44     41   no 15.86192 71.39259
22  28    yes   36  1         31      414        0  NA      0   male  no homeless  6  12 45     39   no 24.14882 52.61977
23  42    yes   36  2         17       38        7  NA      0   male  no   housed 13  13 47     39  yes 29.41298 50.06427
24  34    yes    5  2         23       14        0  NA      1 female  no   housed  6  13 50      8  yes 59.45409 52.69898
25  44   <NA>   36  5         NA      321       19   1      0   male yes homeless 15  26 52     42   no 29.39028 40.38438
26  30     no   44  2        209       26       21   2      0   male yes homeless  9  15 54     44  yes 17.92525 45.48341
27  37    yes   29  2        111       18        0  NA      0   male  no homeless  5  13 56     40  yes 34.43470 63.05807
28  35    yes   46  3         17      365        0  NA      1 female  no   housed 13  20 57     32   no 24.00031 46.75086
29  44    yes   44  1          4       27        0  NA      0   male yes   housed  3   6 59     44  yes 26.65304 40.46056
30  38    yes   30  5         18       30        0   2      0   male  no homeless 36  36 61     38  yes 26.06578 47.60514
31  41     no   29  3        181       19        0   2      1 female yes   housed  3   6 65     20  yes 33.37417 55.23372
32  35    yes   28  1         36      400        0   1      0   male  no   housed 32  32 67     38   no 35.83964 52.68871
33  40     no   57  5        181       34        0  NA      1 female yes homeless 59 164 71     43  yes 17.70596 36.04016
34  38   <NA>   26  4         NA      133        1  NA      0   male  no   housed  0   0 72     38  yes 39.93416 53.15686
35  42    yes   31  2        103       48        8   3      0   male  no homeless 26  51 73     44  yes 23.99673 45.18499
   pss_fr  racegrp satreat sexrisk substance treat avg_drinks max_drinks hospitalizations
1       0    black      no       4   cocaine   yes         13         26                3
2       1    white      no       7   alcohol   yes         56         62               22
3       5    black      no       5   cocaine   yes          4          4                1
4       4    white     yes       6   alcohol   yes         12         24                1
5       0    white     yes       0    heroin   yes         20         27                4
6       0    white      no       2    heroin   yes          0          0                0
7       1    black      no       4   cocaine   yes         13         20               10
8       1    white      no       8   alcohol   yes         51         51                2
9       7 hispanic     yes       3    heroin   yes          0          0                6
10     13    white      no       3    heroin   yes          9         24                0
11      8    black      no       4    heroin   yes         26         26                1
12     14    black      no       4   cocaine   yes          0          0                1
13      3    white      no       5   cocaine   yes          3          3                1
14      6    black      no       4    heroin   yes          7          7                0
15      5    black     yes       2   cocaine   yes          0          0                1
16      2    black     yes       5   cocaine   yes          6          6                0
17     10    black      no       2   cocaine   yes          0          0                1
18     10    black      no       0   cocaine   yes          0          0                1
19      8    black      no       3   alcohol   yes         32        135                1
20      8    other      no       3   missing   yes         24         32                1
21      3    white      no       7   cocaine   yes         24         36               15
22      4    black      no       7   cocaine   yes          6         12                1
23     14    white      no       4    heroin   yes         13         13                2
24     12    black      no       4   cocaine   yes          6         13                2
25     11    black      no      10    heroin   yes         15         26                5
26      6    other      no       9    heroin   yes          9         15                2
27      2    black      no       7   alcohol   yes          5         13                2
28      1    black      no       7   cocaine   yes         13         20                3
29     13    other      no       4   cocaine   yes          3          6                1
30     10    black      no       4   alcohol   yes         36         36                5
31     13    white     yes       4   alcohol   yes          3          6                3
32     12    black     yes       6   cocaine   yes         32         32                1
33      1    black      no       4   alcohol   yes         59        164                5
34      8    white     yes       2    heroin   yes          0          0                4
35      3    white     yes       6   alcohol   yes         26         51                2

Когда вы проверите столбец treat, вы увидите только yes.

Это не сработало. пишет, что функция %>% не найдена.

Andrea 19.03.2022 16:28

@Андреа, теперь должно работать! Также необходимо установить пакет tidyverse.

Quinten 19.03.2022 16:30

! Спасибо, это сработало. Выполняю задание, и я так потерян с R!

Andrea 19.03.2022 16:36

Другие вопросы по теме