Предположим, у меня есть ряд целочисленных значений, расположенных в таком массиве numpy.
nan = np.nan
arr = np.array([3, nan, nan, nan, 5, nan, nan, nan, nan, nan])
nan
значения должны быть заполнены обратным счетом от первого ненулевого значения до нуля.
[3, 2, 1, 0, 5, 4, 3, 2, 1, 0]
да абсолютно
ИМО, самый простой способ панд сделать это — использовать groupby
и cumcount
с ascending=False
:
s = pd.Series(np.cumsum(~np.isnan(arr)))
s.groupby(s).cumcount(ascending=False)
0 3
1 2
2 1
3 0
4 5
5 4
6 3
7 2
8 1
9 0
dtype: int64
@QuangHoang Извините, не уверен, что понимаю. Он помечает строки в каждой группе (убывающим) количеством.
Извините, я, должно быть, замечтался. +1
import pandas as pd
import numpy as np
import math
arr = pd.Series([3,np.nan,np.nan,np.nan,5,np.nan,np.nan,np.nan,np.nan,np.nan])
for i in range(len(arr)):
# Check if each element is "NaN"
if math.isnan(arr[i]):
# If NaN then take the previous element and subtract 1
arr[i] = arr[i-1]-1
# print the final array
print(arr)
Результат:
0 3.0
1 2.0
2 1.0
3 0.0
4 5.0
5 4.0
6 3.0
7 2.0
8 1.0
9 0.0
dtype: float64
1) вы не объяснили свой код (да, это очевидно для меня, но не для всех, кто его читает), и 2) использование циклов с numpy - нет-нет.
Я новичок в numpy, почему циклы плохие?
Операции NumPy реализованы так, чтобы быть быстрее и более масштабируемыми, чем циклы. Процесс называется "векторизация" и с точки зрения производительности на несколько шагов выше циклов.
Вот векторизованный с NumPy -
def backward_count(a):
m = ~np.isnan(a)
idx = np.flatnonzero(m)
p = np.full(len(a), -1, dtype=a.dtype)
p[idx[0]] = a[idx[0]]+idx[0]
d = np.diff(idx)
p[idx[1:]] = np.diff(a[m]) + d - 1
out = p.cumsum()
out[:idx[0]] = np.nan
return out
Пример запуска с более общим случаем -
In [238]: a
Out[238]: array([nan, 3., nan, 5., nan, 10., nan, nan, 4., nan, nan])
In [239]: backward_count(a)
Out[239]: array([nan, 3., 2., 5., 4., 10., 9., 8., 4., 3., 2.])
Настройка с масштабированием данного образца на 10,000x
-
In [240]: arr = np.array([3, nan, nan, nan, 5, nan, nan, nan, nan, nan])
In [241]: arr = np.tile(arr,10000)
# Pandas based one by @cs95
In [243]: %%timeit
...: s = pd.Series(np.cumsum(~np.isnan(arr)))
...: s.groupby(s).cumcount(ascending=False)
35.9 ms ± 258 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [245]: %timeit backward_count(arr)
3.04 ms ± 4.35 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Панды тоже работают?