Перекрывающиеся графики плотности нескольких столбцов фрейма данных pandas

import numpy as np
import pandas as pd

col1 = np.random.normal(0, 1, (1000, ))
col2 = np.random.normal(0, 1, (1000, ))
col3 = np.random.normal(0, 1, (1000, ))
df = pd.DataFrame({'col1':col1, 'col2':col2, 'col3':col3})
  • Постройте каждый столбец как непрерывную линию
  • Постройте все 3 столбца на одной оси
  • Используйте линии разного цвета (без заливки)

Заранее спасибо!

Если вам нужны плавные линии, вам может понадобиться график оценки плотности ядра (KDE). Это будет 'df.plot.kde()'. Вы можете увидеть пример в связь.

B Troy 30.05.2019 01:16
Почему в Python есть оператор "pass"?
Почему в Python есть оператор "pass"?
Оператор pass в Python - это простая концепция, которую могут быстро освоить даже новички без опыта программирования.
Некоторые методы, о которых вы не знали, что они существуют в Python
Некоторые методы, о которых вы не знали, что они существуют в Python
Python - самый известный и самый простой в изучении язык в наши дни. Имея широкий спектр применения в области машинного обучения, Data Science,...
Основы Python Часть I
Основы Python Часть I
Вы когда-нибудь задумывались, почему в программах на Python вы видите приведенный ниже код?
LeetCode - 1579. Удаление максимального числа ребер для сохранения полной проходимости графа
LeetCode - 1579. Удаление максимального числа ребер для сохранения полной проходимости графа
Алиса и Боб имеют неориентированный граф из n узлов и трех типов ребер:
Оптимизация кода с помощью тернарного оператора Python
Оптимизация кода с помощью тернарного оператора Python
И последнее, что мы хотели бы показать вам, прежде чем двигаться дальше, это
Советы по эффективной веб-разработке с помощью Python
Советы по эффективной веб-разработке с помощью Python
Как веб-разработчик, Python может стать мощным инструментом для создания эффективных и масштабируемых веб-приложений.
0
1
238
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

Я понял ваш вопрос! Вот как я бы сделал это в matplotlib.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

col1 = np.random.normal(0, 1, (1000, ))
col2 = np.random.normal(1, 1, (1000, ))
col3 = np.random.normal(-1, 1, (1000, ))
df = pd.DataFrame({'col1':col1, 'col2':col2, 'col3':col3})

df['col1_bins'] = pd.cut(df['col1'], bins=np.arange(-10, 11, 0.5))
df['col2_bins'] = pd.cut(df['col2'], bins=np.arange(-10, 11, 0.5))
df['col3_bins'] = pd.cut(df['col3'], bins=np.arange(-10, 11, 0.5))

col1_counts = df[['col1_bins', 'col1']].groupby(['col1_bins']).count().reset_index()
col2_counts = df[['col2_bins', 'col1']].groupby(['col2_bins']).count().reset_index()
col3_counts = df[['col3_bins', 'col1']].groupby(['col3_bins']).count().reset_index()

plt.plot(col1_counts['col1_bins'].astype(str), col1_counts['col1'], 'r')
plt.plot(col2_counts['col2_bins'].astype(str), col2_counts['col1'], 'b')
plt.plot(col3_counts['col3_bins'].astype(str), col3_counts['col1'], 'g')

По сути, вам нужно сгруппировать точки данных, прежде чем вы сможете их построить.

Другие вопросы по теме