Используемый CNN уже отображался в Предсказание изображения с помощью Keras, но я хочу следить за другой целью. Я, по-видимому, использую следующий CNN из учебника KERAS «Построение мощных моделей классификации изображений с использованием очень небольшого количества данных» (Франсуа Шоле). Я хотел бы получить ложные прогнозы в качестве дополнительного вывода, чтобы увидеть, слишком ли сложно классифицировать изображения, если у CNN есть проблемы - есть ли простой способ включить это в код?
from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
from keras.preprocessing.image import ImageDataGenerator,
array_to_img, img_to_array, load_img
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
img = load_img('data/train/cats/cat.0.jpg') # this is a PIL image x =
img_to_array(img) # this is a Numpy array with shape (3, 150, 150) x
= x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)
i = 0 for batch in datagen.flow(x, batch_size=1,
save_to_dir='preview', save_prefix='cat', save_format='jpeg'):
i += 1
if i > 20:
break # otherwise the generator would loop indefinitely
from keras.models import Sequential from keras.layers import Conv2D,
MaxPooling2D from keras.layers import Activation, Dropout, Flatten,
Dense
model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(3, 150,
150))) model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3))) model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3))) model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D
feature vectors model.add(Dense(64)) model.add(Activation('relu'))
model.add(Dropout(0.5)) model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) batch_size = 16
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train', # this is the target directory
target_size=(150, 150), # all images will be resized to 150x150
batch_size=batch_size,
class_mode='binary') # since we use binary_crossentropy loss, we need binary labels
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('first_try.h5')
только для набора данных, чтобы я мог оценить, почему классификация во время тестирования была неправильной
Затем я предлагаю использовать библиотеку scikit learn, например. вы можете найти там матрицу путаницы, там вы можете увидеть ложные срабатывания. scikit-learn.org/0.17/modules/generated/…
Вы правы - совсем забыл про матрицу. Я попробую. Спасибо за подсказку!
вы хотите проверить Ложноположительный результат во время тренировки? Или только для тестового набора данных?