Pyspark + анализ ассоциативных правил: как передать фрейм данных в формат, подходящий для частого анализа шаблонов?

Я пытаюсь использовать pyspark для интеллектуального анализа правил ассоциации. Допустим, мои данные такие:

myItems=spark.createDataFrame([(1,'a'),
                               (1,'b'),
                               (1,'d'),
                               (1,'c'),
                               (2,'a'),
                               (2,'c'),],
                              ['id','item']) 

Но согласно https://spark.apache.org/docs/2.2.0/ml-frequent-pattern-mining.html формат должен быть:

df = spark.createDataFrame([(1, ['a', 'b', 'd','c']),
                            (2, ['a', 'c'])], 
                           ["id", "items"])

Поэтому мне нужно перенести свои данные из вертикального в горизонтальное, а длины для всех идентификаторов разные.

Как я могу сделать этот перевод, или есть другой способ сделать это?

Стоит ли изучать PHP в 2023-2024 годах?
Стоит ли изучать PHP в 2023-2024 годах?
Привет всем, сегодня я хочу высказать свои соображения по поводу вопроса, который я уже много раз получал в своем сообществе: "Стоит ли изучать PHP в...
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
В JavaScript одним из самых запутанных понятий является поведение ключевого слова "this" в стрелочной и обычной функциях.
Приемы CSS-макетирования - floats и Flexbox
Приемы CSS-макетирования - floats и Flexbox
Здравствуйте, друзья-студенты! Готовы совершенствовать свои навыки веб-дизайна? Сегодня в нашем путешествии мы рассмотрим приемы CSS-верстки - в...
Тестирование функциональных ngrx-эффектов в Angular 16 с помощью Jest
В системе управления состояниями ngrx, совместимой с Angular 16, появились функциональные эффекты. Это здорово и делает код определенно легче для...
Концепция локализации и ее применение в приложениях React ⚡️
Концепция локализации и ее применение в приложениях React ⚡️
Локализация - это процесс адаптации приложения к различным языкам и культурным требованиям. Это позволяет пользователям получить опыт, соответствующий...
Пользовательский скаляр GraphQL
Пользовательский скаляр GraphQL
Листовые узлы системы типов GraphQL называются скалярами. Достигнув скалярного типа, невозможно спуститься дальше по иерархии типов. Скалярный тип...
0
0
848
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

Пусть ваше исходное определение myItems будет действительным. collect_list будет полезно после того, как вы обычно group фрейм данных по идентификатору.

>>> myItems=spark.createDataFrame([(1,'a'),
...                                (1,'b'),
...                                (1,'d'),
...                                (1,'c'),
...                                (2,'a'),
...                                (2,'c'),],
...                               ['id','item'])
>>> from pyspark.sql.functions import collect_list
>>> myItems.groupBy(myItems.id).agg(collect_list('item')).show()
+---+------------------+
| id|collect_list(item)|
+---+------------------+
|  1|      [a, b, d, c]|
|  2|            [a, c]|
+---+------------------+

Другие вопросы по теме