Я пытался получить экстремумы вектора, который выглядит так:
или вот так:
Я пытался получить локальные максимумы и минимумы, он хорошо работает с:
(diff(sign(diff(values_right_vector))) > 0).nonzero()[0] + 1
но впоследствии это только обходной путь и обходной путь, потому что всегда есть случай, когда мой предыдущий обходной путь не работает..
У него всегда один и тот же узор.
У вас есть идеи, как я могу получить эти максимумы и минимумы независимо от входного вектора (left
и right
) на изображении.
Вот пример:
[-2.7, -2.5, -2.1, -2.1, -1.8, -1.4, -0.9, -0.2, 0.5, 1.4, 2.2, 2.9, 3.5, 3.8, 3.8, 3.3, 2.3, 1.1, -0.5, -2.1, -3.5, -4.7, -5.5, -5.8, -5.6, -5.0, -4.2, -3.3, -2.3, -1.4, -0.8, -0.3, 0.0, 0.2, 0.2, 0.2, 0.1, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.3, -0.4, -0.4, -0.5, -0.4, -0.3, -0.1, 0.2, 0.5, 0.7, 0.9, 0.9, 1.0, 0.9, 0.9, 0.9, 0.8, 0.7, 0.6, 0.3, 0.0, -0.4, -0.9, -1.3, -1.5, -1.6, -1.5, -1.1, -0.5, 0.2, 1.2, 2.1, 3.0, 3.8, 4.3, 4.3, 4.0, 3.2, 1.9, 0.4, -1.3, -3.0, -4.4, -5.4, -6.0, -6.0, -5.6, -4.8, -3.9, -2.9, -1.9, -1.2, -0.6, -0.2, 0.0, 0.1, 0.1, 0.1, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, -0.1, -0.3, -0.5, -0.7, -0.9, -1.1, -1.1, -1.0, -0.8, -0.4, 0.3, 1.1, 1.9, 2.8, 3.6, 4.2, 4.5, 4.5, 4.1, 3.4, 2.5, 1.5, 0.5, -0.5, -1.4, -2.1, -2.8, -3.3, -3.7, -3.9, -3.9, -3.8, -3.4, -2.9, -2.2, -1.3, -0.4, 0.7, 1.7, 2.5, 3.2, 3.6, 3.6, 3.2, 2.4, 1.3, -0.1, -1.6, -3.0, -4.1, -4.9, -5.1, -5.0, -4.4, -3.6, -2.7, -1.8, -1.1, -0.5, -0.1, 0.1, 0.2, 0.2, 0.1, 0.1, 0.0, -0.1, -0.1]```
Нет, это не дубликат, как я объяснил после получения этих точек экстремумов, мне нужно их проанализировать, и это только обходной путь за обходным путем.
Можете ли вы предоставить некоторые примеры данных, которые демонстрируют этот шаблон?
Кроме того, каковы ваши критерии выбора экстремумов?
Критерием являются экстремумы, показанные зеленым цветом. Для максимумов это довольно просто, просто возьмите максимумы по формуле, которую я дал, и отметьте все «ложные» максимумы ниже global max - threshold
Для минимумов это всегда вторая «капля» после максимумов (но для второй картинки есть хитрость потому что он начинается только с первого..)
разместите некоторые образцы данных, если вам нужна осторожная помощь
сделано :) Я не думаю, что это разрешимо с помощью общего детерминированного алгоритма. Слишком много случаев. Второй выше доказывает это.. Если у вас есть идея, не стесняйтесь!
В Scipy есть функция find_peaks
, которой вы можете манипулировать, чтобы найти нужные пики, используя параметр distance
. Параметр distance
сообщает Scipy, сколько пробелов между выборками следует искать для пиков. Вы можете настроить это, чтобы лучше всего соответствовать вашим данным. Используя только предоставленные вами образцы данных,
import numpy as np
from scipy.signal import find_peaks
import matplotlib.pyplot as plt
y = np.array([-2.7, -2.5, -2.1, -2.1, -1.8, -1.4, -0.9, -0.2, 0.5, 1.4, 2.2, 2.9, 3.5, 3.8, 3.8, 3.3, 2.3, 1.1, -0.5, -2.1, -3.5, -4.7, -5.5, -5.8, -5.6, -5.0, -4.2, -3.3, -2.3, -1.4, -0.8, -0.3, 0.0, 0.2, 0.2, 0.2, 0.1, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.3, -0.4, -0.4, -0.5, -0.4, -0.3, -0.1, 0.2, 0.5, 0.7, 0.9, 0.9, 1.0, 0.9, 0.9, 0.9, 0.8, 0.7, 0.6, 0.3, 0.0, -0.4, -0.9, -1.3, -1.5, -1.6, -1.5, -1.1, -0.5, 0.2, 1.2, 2.1, 3.0, 3.8, 4.3, 4.3, 4.0, 3.2, 1.9, 0.4, -1.3, -3.0, -4.4, -5.4, -6.0, -6.0, -5.6, -4.8, -3.9, -2.9, -1.9, -1.2, -0.6, -0.2, 0.0, 0.1, 0.1, 0.1, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, -0.1, -0.3, -0.5, -0.7, -0.9, -1.1, -1.1, -1.0, -0.8, -0.4, 0.3, 1.1, 1.9, 2.8, 3.6, 4.2, 4.5, 4.5, 4.1, 3.4, 2.5, 1.5, 0.5, -0.5, -1.4, -2.1, -2.8, -3.3, -3.7, -3.9, -3.9, -3.8, -3.4, -2.9, -2.2, -1.3, -0.4, 0.7, 1.7, 2.5, 3.2, 3.6, 3.6, 3.2, 2.4, 1.3, -0.1, -1.6, -3.0, -4.1, -4.9, -5.1, -5.0, -4.4, -3.6, -2.7, -1.8, -1.1, -0.5, -0.1, 0.1, 0.2, 0.2, 0.1, 0.1, 0.0, -0.1, -0.1])
# Get the maxima and minima
maxima, _ = find_peaks(y, distance = 50)
minima, _ = find_peaks(-y, distance = 50)
find_peaks
возвращает индексы пиков, поэтому мы можем использовать -y
для получения минимумов.
Вы также можете проиндексировать maxima
и minima
, чтобы выбрать нужные пики, выполнив что-то вроде maxima[::2]
, чтобы выбрать все остальные максимумы.
fig, ax = plt.subplots()
ax.plot(y)
ax.plot(maxima, y[maxima], 'x')
ax.plot(minima, y[minima], 'x')
plt.show()
Возможный дубликат Поиск локальных максимумов/минимумов с помощью Numpy в массиве 1D numpy