ValueError: квантизация модели tf.keras внутри другой модели tf.keras не поддерживается.

Я только начал работать с Keras/Tensorflow и пытаюсь переобучить и выполнить квантизацию для int8 и MobileNetV2, но получаю эту ошибку:

ValueError: Quantizing a tf.keras Model inside another tf.keras Model is not supported.

Я следовал этому гид, чтобы обойти шаги квантования, но я не совсем уверен, что именно я делаю по-другому.

IMG_SHAPE = (224, 224, 3)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
                                                  include_top=False, 
                                                  weights='imagenet')
base_model.trainable = False
model = tf.keras.Sequential([
  base_model,
  tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu'),
  tf.keras.layers.Dropout(0.5),
  tf.keras.layers.MaxPool2D(pool_size=(2, 2)),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(units=2, activation='softmax')
])

quantize_model = tfmot.quantization.keras.quantize_model
q_aware_model = quantize_model(model)

Трассировки стека:

ValueError                                Traceback (most recent call last)

<ipython-input-34-b724ad4872a5> in <module>()
      9 
     10 quantize_model = tfmot.quantization.keras.quantize_model
---> 11 q_aware_model = quantize_model(model)

4 frames

/usr/local/lib/python3.7/dist-packages/tensorflow_model_optimization/python/core/quantization/keras/quantize.py in _add_quant_wrapper(layer)
    217     if isinstance(layer, tf.keras.Model):
    218       raise ValueError(
--> 219           'Quantizing a tf.keras Model inside another tf.keras Model is not supported.'
    220       )
    221 

Я думаю, что ошибка понятна. Вы не можете квантовать эту модель, так как она включает в себя базовую модель.

Frightera 16.05.2022 20:56

Привет, спасибо за информацию. Как я могу квантовать свою модель в этом случае?

ljnoah 16.05.2022 21:30

Я добавил в качестве ответа, вы можете пометить его как принятый, если он решит проблему. Если нет, дайте мне знать.

Frightera 16.05.2022 23:25
Анализ настроения постов в Twitter с помощью Python, Tweepy и Flair
Анализ настроения постов в Twitter с помощью Python, Tweepy и Flair
Анализ настроения текстовых сообщений может быть настолько сложным или простым, насколько вы его сделаете. Как и в любом ML-проекте, вы можете выбрать...
7 лайфхаков для начинающих Python-программистов
7 лайфхаков для начинающих Python-программистов
В этой статье мы расскажем о хитростях и советах по Python, которые должны быть известны разработчику Python.
Установка Apache Cassandra на Mac OS
Установка Apache Cassandra на Mac OS
Это краткое руководство по установке Apache Cassandra.
Сертификатная программа "Кванты Python": Бэктестер ансамблевых методов на основе ООП
Сертификатная программа "Кванты Python": Бэктестер ансамблевых методов на основе ООП
В одном из недавних постов я рассказал о том, как я использую навыки количественных исследований, которые я совершенствую в рамках программы TPQ...
Создание персонального файлового хранилища
Создание персонального файлового хранилища
Вы когда-нибудь хотели поделиться с кем-то файлом, но он содержал конфиденциальную информацию? Многие думают, что электронная почта безопасна, но это...
Создание приборной панели для анализа данных на GCP - часть I
Создание приборной панели для анализа данных на GCP - часть I
Недавно я столкнулся с интересной бизнес-задачей - визуализацией сбоев в цепочке поставок лекарств, которую могут просматривать врачи и...
0
3
30
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

В этом случае ваш base_model ведет себя так, как будто это слой. Чтобы расширить его, вам нужно использовать Functional API, а не Sequential API:

IMG_SHAPE = (224, 224, 3)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
                                                  include_top=False, 
                                                  weights='imagenet')
base_model.trainable = False
x = tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu')(base_model.output)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(units=2, activation='softmax')(x)

model = tf.keras.Model(base_model.input, x)
model.summary()

Обратите внимание, что сводка модели показывает все слои, включая base_model's. Тогда вы можете подать заявку:

quantize_model = tfmot.quantization.keras.quantize_model
q_aware_model = quantize_model(model)

Спасибо за информацию, я последовал вашему ответу и успешно смог квантовать свою модель.

ljnoah 17.05.2022 11:26

Другие вопросы по теме