Я создаю модель vae для набора данных mnist в надежде построить график функции потерь в зависимости от эпох. Однако у меня возникли некоторые проблемы, и я не смог найти решение в Интернете. Во время моего импорта у меня есть следующие импорты (просто чтобы дать некоторый контекст коду):
from keras import backend as K
from keras.layers import Input, Dense, Lambda, Layer, Add, Multiply
from keras.models import Model, Sequential
from keras.datasets import mnist
Я также создал функцию с именем bn для собственных расчетов потерь и класс KLDivergenceLayer, который добавляет слой расхождения KL к потерям окончательной модели.
Код:
decoder = Sequential([
Dense(intermediate_dim, input_dim=latent_dim, activation='relu'),
Dense(original_dim, activation='sigmoid')
])
x = Input(shape=(original_dim,))
h = Dense(intermediate_dim, activation='relu')(x)
z_mu = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
z_mu, z_log_var = KLDivergenceLayer()([z_mu, z_log_var])
z_sigma = Lambda(lambda t: K.exp(.5*t))(z_log_var)
eps = Input(tensor=K.random_normal(stddev=epsilon_std,
shape=(K.shape(x)[0], latent_dim)))
z_eps = Multiply()([z_sigma, eps])
z = Add()([z_mu, z_eps])
x_pred = decoder(z)
vae = Model(inputs=[x, eps], outputs=x_pred)
vae.compile(optimizer='rmsprop', loss=bn)
# train the VAE on MNIST digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, original_dim) / 255.
x_test = x_test.reshape(-1, original_dim) / 255.
vae.fit(x_train, x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, x_test))
и ошибка, которую я получаю, выглядит следующим образом:
ValueError: Layer model expects 2 input(s), but it received 1 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(100, 784) dtype=float32>]
Проблема в вашем слое eps. это не ввод модели
вы можете заменить его простым слоем, подобным этому:
eps = Lambda(lambda t: K.random_normal(stddev=1.0, shape=(K.shape(t)[0], latent_dim)))(z_log_var)
здесь вы можете найти рабочий блокнот:
https://colab.research.google.com/drive/1fLmfwCA_TOeOlXiiSabp4C4UKq73ofEN?usp=sharing
Большое спасибо! Ваше решение помогло, ура.