Вложенные ветки (и зависимости) в mlr3

Я пытаюсь использовать фильтрацию функций information_gain и mrmr, а также комбинацию фильтрации функций information_gain и mrmr (союз двух). Я попытался создать репрекс ниже.

library("mlr3verse")
task <- tsk('sonar')


filters = list("nop" = po("nop"),
               "information_gain" = po("filter", flt("information_gain")),
               "mrmr" = po("filter", flt("mrmr")),
               "ig_mrmr" = po("branch", c("ig2", "mrmr2"), id = "ig_mrmr") %>>%
                 gunion(list("ig2" = po("filter", flt("information_gain")),
                             "mrmr2" = po("filter", flt("mrmr")))) %>>%
                 po("featureunion", id = "union_igmrmr"))

pipe =
  po("branch", names(filters), id = "branch1") %>>%
  gunion(unname(filters)) %>>%
  po("unbranch", names(filters), id = "unbranch1") %>>%
  po(lrn('classif.rpart'))

pipe$plot()

участок трубы

Пока выглядит хорошо, и здесь вы можете видеть, что я пытаюсь объединить выбранные функции ig и mrmr.

Далее я задаю параметры, которые считаю правильными:

ps <- ParamSet$new(list(
  ParamDbl$new("classif.rpart.cp", lower = 0, upper = 0.05),
  ParamInt$new("information_gain.filter.nfeat", lower = 20L, upper = 60L),
  ParamFct$new("information_gain.type", levels = c("infogain", "symuncert")),
  ParamInt$new("ig2.filter.nfeat", lower = 20L, upper = 60L),
  ParamFct$new("ig2.type", levels = c("infogain", "symuncert")),
  ParamInt$new("mrmr.filter.nfeat", lower = 20L, upper = 60L),
  ParamInt$new("mrmr2.filter.nfeat", lower = 20L, upper = 60L),
  ParamFct$new("branch1.selection", levels = names(filters)),
  ParamFct$new("ig_mrmr.selection", levels = c("ig2", "mrmr2"))
))

Зависимости - это то, где я борюсь. Я могу установить «вложенные» параметры ЛИБО во внешней или внутренней ветке, но я не уверен, как их активировать в ОБОИХ. В приведенном ниже примере они установлены на внешней ветке.

ps$add_dep("information_gain.filter.nfeat", "branch1.selection", CondEqual$new("information_gain"))
ps$add_dep("information_gain.type", "branch1.selection", CondEqual$new("information_gain"))
ps$add_dep("mrmr.filter.nfeat", "branch1.selection", CondEqual$new("mrmr"))
ps$add_dep("ig2.filter.nfeat", "branch1.selection", CondEqual$new("ig_mrmr"))
ps$add_dep("ig2.type", "branch1.selection", CondEqual$new("ig_mrmr"))
ps$add_dep("mrmr2.filter.nfeat", "branch1.selection", CondEqual$new("ig_mrmr"))

ps

glrn <- GraphLearner$new(pipe) 

glrn$predict_type <- "prob"

cv5 <- rsmp("cv", folds = 5)

task$col_roles$stratum <- task$target_names

instance <- TuningInstanceSingleCrit$new(
  task = task,
  learner = glrn,
  resampling = cv5,
  measure = msr("classif.auc"),
  search_space = ps,
  terminator = trm("evals", n_evals = 5)
)

tuner <- tnr("random_search")
tuner$optimize(instance)

Обратите внимание, что я не сталкиваюсь с ошибкой, пока не попытаюсь оптимизировать тюнер.

Сообщение об ошибке:

Error in self$assert(xs) : 
  Assertion on 'xs' failed: Parameter 'ig2.filter.nfeat' not available. Did you mean 'branch1.selection' / 'information_gain.filter.nfeat' / 'information_gain.filter.frac'?.

основываясь на вашем объяснении, я думаю, вы не собираетесь использовать ветку для «ig_mrmr», а скорее копируете. Ветвление — это так или иначе, в то время как вы хотите, чтобы граф работал в обоих направлениях, а затем объединял результаты.

missuse 12.12.2020 12:26

@missuse Это звучит возможно. В другом сегменте (не включенном в репрекс) я использую «featureunion» для объединения PCA и необработанных данных (как в cbind(raw, pca)), поэтому я подумал, что это будет работать аналогично. Я в значительной степени основываю свой код на вашем примере, который я нашел с января 20 года. Не могли бы вы предоставить фрагмент псевдокода, чтобы помочь мне начать?

Alexander Rajan 12.12.2020 14:13

@missuse Я попытался поменять местами `"ig_mrmr" = po("copy", 2) %>>%` для ветки и удалить пространство параметров для ветки, та же ошибка. Он не может найти параметры для ig2 и mrmr2, поэтому я думаю, что что-то не так с логикой в ​​моих зависимостях.

Alexander Rajan 12.12.2020 14:25
Стоит ли изучать PHP в 2023-2024 годах?
Стоит ли изучать PHP в 2023-2024 годах?
Привет всем, сегодня я хочу высказать свои соображения по поводу вопроса, который я уже много раз получал в своем сообществе: "Стоит ли изучать PHP в...
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
Поведение ключевого слова "this" в стрелочной функции в сравнении с нормальной функцией
В JavaScript одним из самых запутанных понятий является поведение ключевого слова "this" в стрелочной и обычной функциях.
Приемы CSS-макетирования - floats и Flexbox
Приемы CSS-макетирования - floats и Flexbox
Здравствуйте, друзья-студенты! Готовы совершенствовать свои навыки веб-дизайна? Сегодня в нашем путешествии мы рассмотрим приемы CSS-верстки - в...
Тестирование функциональных ngrx-эффектов в Angular 16 с помощью Jest
В системе управления состояниями ngrx, совместимой с Angular 16, появились функциональные эффекты. Это здорово и делает код определенно легче для...
Концепция локализации и ее применение в приложениях React ⚡️
Концепция локализации и ее применение в приложениях React ⚡️
Локализация - это процесс адаптации приложения к различным языкам и культурным требованиям. Это позволяет пользователям получить опыт, соответствующий...
Пользовательский скаляр GraphQL
Пользовательский скаляр GraphQL
Листовые узлы системы типов GraphQL называются скалярами. Достигнув скалярного типа, невозможно спуститься дальше по иерархии типов. Скалярный тип...
4
3
156
1
Перейти к ответу Данный вопрос помечен как решенный

Ответы 1

Ответ принят как подходящий

Судя по вашему описанию, вы не собираетесь использовать ветку для c("ig2", "mrmr2"):

po("branch", c("ig2", "mrmr2"), id = "ig_mrmr") %>>%
                 gunion(list("ig2" = po("filter", flt("information_gain")),
                             "mrmr2" = po("filter", flt("mrmr")))) %>>%
                 po("featureunion", id = "union_igmrmr")

так как вы собираетесь объединить вывод этих двух. Другими словами, вы хотите, чтобы они оба применялись в одном и том же случае передискретизации.

library("mlr3verse")
task <- tsk('sonar')
filters = list("nop" = po("nop"),
               "information_gain" = po("filter", flt("information_gain")),
               "mrmr" = po("filter", flt("mrmr")),
               "ig_mrmr" = po("copy", 2) %>>%
                 gunion(list("ig2" = po("filter", flt("information_gain")),
                                       "mrmr2" = po("filter", flt("mrmr")))) %>>%
                 po("featureunion", id = "union_igmrmr"))

pipe = po("branch", names(filters), id = "branch1") %>>%
  gunion(unname(filters)) %>>%
  po("unbranch", names(filters), id = "unbranch1") %>>%
  po(lrn('classif.rpart'))

pipe$plot()

Самый простой способ увидеть параметры, которые вы можете настроить, это:

pipe$param_set

Из этого вы увидите, что некоторые параметры, которые вы указали, не имеют полных имен. Например:

15:   ig2.information_gain.filter.nfeat ParamInt     0   Inf                                   <NoDefault[3]>      
16:    ig2.information_gain.filter.frac ParamDbl     0     1                                   <NoDefault[3]>      
17:  ig2.information_gain.filter.cutoff ParamDbl  -Inf   Inf                                   <NoDefault[3]>      
18:           ig2.information_gain.type ParamFct    NA    NA      infogain,gainratio,symuncert       infogain      
19:          ig2.information_gain.equal ParamLgl    NA    NA                        TRUE,FALSE          FALSE      
20:   ig2.information_gain.discIntegers ParamLgl    NA    NA                        TRUE,FALSE           TRUE      
21:        ig2.information_gain.threads ParamInt     0   Inf                                                1      
22: ig2.information_gain.affect_columns ParamUty    NA    NA                                    <Selector[1]>      
23:             mrmr2.mrmr.filter.nfeat ParamInt     0   Inf                                   <NoDefault[3]>      
24:              mrmr2.mrmr.filter.frac ParamDbl     0     1                                   <NoDefault[3]>      
25:            mrmr2.mrmr.filter.cutoff ParamDbl  -Inf   Inf                                   <NoDefault[3]>      
26:                  mrmr2.mrmr.threads ParamInt     0   Inf                                                0      
27:           mrmr2.mrmr.affect_columns ParamUty    NA    NA                                    <Selector[1]>      

Укажем правильные имена для параметров:

ps = ParamSet$new(list(
  ParamDbl$new("classif.rpart.cp", lower = 0, upper = 0.05),
  ParamInt$new("information_gain.filter.nfeat", lower = 20L, upper = 60L),
  ParamFct$new("information_gain.type", levels = c("infogain", "symuncert")),
  ParamInt$new("ig2.information_gain.filter.nfeat", lower = 20L, upper = 60L),
  ParamFct$new("ig2.information_gain.type", levels = c("infogain", "symuncert")),
  ParamInt$new("mrmr.filter.nfeat", lower = 20L, upper = 60L),
  ParamInt$new("mrmr2.mrmr.filter.nfeat", lower = 20L, upper = 60L),
  ParamFct$new("branch1.selection", levels = names(filters))
))

ps$add_dep("information_gain.filter.nfeat", "branch1.selection", CondEqual$new("information_gain"))
ps$add_dep("information_gain.type", "branch1.selection", CondEqual$new("information_gain"))
ps$add_dep("mrmr.filter.nfeat", "branch1.selection", CondEqual$new("mrmr"))
ps$add_dep("ig2.information_gain.filter.nfeat", "branch1.selection", CondEqual$new("ig_mrmr"))
ps$add_dep("ig2.information_gain.type", "branch1.selection", CondEqual$new("ig_mrmr"))
ps$add_dep("mrmr2.mrmr.filter.nfeat", "branch1.selection", CondEqual$new("ig_mrmr"))

и теперь все работает без проблем:

glrn <- GraphLearner$new(pipe) 

glrn$predict_type <- "prob"

cv5 <- rsmp("cv", folds = 5)

task$col_roles$stratum <- task$target_names

instance <- TuningInstanceSingleCrit$new(
  task = task,
  learner = glrn,
  resampling = cv5,
  measure = msr("classif.auc"),
  search_space = ps,
  terminator = trm("evals", n_evals = 5)
)

tuner <- tnr("random_search")
tuner$optimize(instance)

instance$result
   classif.rpart.cp information_gain.filter.nfeat information_gain.type ig2.information_gain.filter.nfeat ig2.information_gain.type mrmr.filter.nfeat mrmr2.mrmr.filter.nfeat branch1.selection
1:       0.01956043                            NA                  <NA>                                44                 symuncert                NA                      34           ig_mrmr
   learner_param_vals  x_domain classif.auc
1:          <list[6]> <list[5]>   0.7187196

Этот пост галереи будет полезен:

https://mlr3gallery.mlr-org.com/posts/2020-04-23-pipelines-selectors-branches/

а также другие

https://mlr3gallery.mlr-org.com/

Если вы чувствуете, что какой-то аспект mlr3 непонятен, и вы не можете найти подходящий пример поста/книги в галерее, вы должны запросить его.

Ссылка на книгу: https://mlr3book.mlr-org.com/

Другие вопросы по теме