импортировать панд как pd импортировать numpy как np импортировать
pd.options.display.max_columns = 20
У меня есть сезон столбца данных, который выглядит так (первые 20 записей):
season
0 2006-07
1 2007-08
2 2008-09
3 2009-10
4 2010-11
5 2011-12
6 2012-13
7 2013-14
8 2014-15
9 2015-16
10 2016-17
11 2017-18
12 2018-19
13 Career
14 season
15 2018-19
16 Career
17 season
18 2017-18
19 2018-19
Он начинается с сезона и заканчивается карьерой. Я хочу заменить годы числами, начинающимися с 1 и заканчивающимися карьерой. Я хочу быть таким:
season
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 Career
14 season
15 1
16 Career
17 season
18 1
19 2
Таким образом, подсчет должен сбрасываться каждый раз, когда в столбце есть сезон, и заканчиваться каждый раз, когда есть карьера.
Создайте последовательные группы по маске сравнения, созданной Series.isin
со сдвинутыми значениями с GroupBy.cumcount
для счетчика:
s = df['season'].isin(['Career', 'season'])
df['new'] = np.where(s, df['season'], df.groupby(s.ne(s.shift()).cumsum()).cumcount() + 1)
print (df)
season new
0 2006-07 1
1 2007-08 2
2 2008-09 3
3 2009-10 4
4 2010-11 5
5 2011-12 6
6 2012-13 7
7 2013-14 8
8 2014-15 9
9 2015-16 10
10 2016-17 11
11 2017-18 12
12 2018-19 13
13 Career Career
14 season season
15 2018-19 1
16 Career Career
17 season season
18 2017-18 1
19 2018-19 2
Для замены столбца season
:
s = df['season'].isin(['Career', 'season'])
df.loc[~s, 'season'] = df.groupby(s.ne(s.shift()).cumsum()).cumcount() + 1
print (df)
season
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 Career
14 season
15 1
16 Career
17 season
18 1
19 2